Affiliation:
1. University of Oklahoma, Norman, Oklahoma
2. University of Oklahoma–CIMMS–National Severe Storms Laboratory, Norman, Oklahoma
Abstract
Abstract
Bowing, propagating precipitation features that sometimes appear in NCEP's North American Mesoscale model (NAM; formerly called the Eta Model) forecasts are examined. These features are shown to be associated with an unusual convective heating profile generated by the Betts–Miller–Janjić convective parameterization in certain environments. A key component of this profile is a deep layer of cooling in the lower to middle troposphere. This strong cooling tendency induces circulations that favor expansion of parameterized convective activity into nearby grid columns, which can lead to growing, self-perpetuating mesoscale systems under certain conditions. The propagation characteristics of these systems are examined and three contributing mechanisms of propagation are identified. These include a mesoscale downdraft induced by the deep lower-to-middle tropospheric cooling, a convectively induced buoyancy bore, and a boundary layer cold pool that is indirectly produced by the convective scheme in this environment. Each of these mechanisms destabilizes the adjacent atmosphere and decreases convective inhibition in nearby grid columns, promoting new convective development, expansion, and propagation of the larger system. These systems appear to show a poor correspondence with observations of bow echoes on time and space scales that are relevant for regional weather prediction, but they may provide important clues about the propagation mechanisms of real convective systems.
Publisher
American Meteorological Society
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献