Unravelling the mechanism of summer monsoon rainfall modes over the west coast of India using model simulations

Author:

Phadtare Jayesh A.12ORCID,Fletcher Jennifer K.12ORCID,Ross Andrew N.1ORCID,Turner Andrew G.34ORCID,Schiemann Reinhard K. H.4,Burns Helen L.5

Affiliation:

1. School of Earth and Environment University of Leeds Leeds UK

2. National Centre for Atmospheric Science University of Leeds Leeds UK

3. Department of Meteorology University of Reading Reading UK

4. National Centre for Atmospheric Science University of Reading Reading UK

5. Centre for Environmental Modelling And Computation University of Leeds Leeds UK

Abstract

AbstractA transition from a predominantly offshore to an onshore rainfall phase over the west coast of India was simulated using three one‐way nested domains with 12, 4, and 1.33 km horizontal grid spacing in the Weather Research and Forecasting model. The mechanism of offshore–onshore rainfall oscillation and the orographic effects of the Western Ghats are studied. A convective parametrization scheme was employed only in the 12 km domain. A trough extending offshore from the west coast facilitates offshore rainfall. This trough is absent during the onshore phase, and rainfall occurs over the coast mainly via orographic uplift by the Western Ghats. The model overestimates rainfall over the Western Ghats at all resolutions as it consistently underestimates the boundary‐layer stratification along the coast. Weaker stratification weakens the blocking effect of the Western Ghats, resulting in anomalous deep convection and rainfall over its windward slopes. The 4 and 1.33 km domains simulate the offshore‐to‐onshore transition of rainfall but fail to capture a sufficient contrast in rainfall between land and sea compared with observations. The 12 km domain produces light rainfall, anchored along the coast, throughout the simulation period and, hence, gravely underestimates the offshore rainfall. The offshore rainfall persisted in the 4 and 1.33 km domains in a sensitivity experiment in which the Western Ghats were flattened. This suggests that orographic effects do not significantly influence offshore rainfall. In another experiment, the convective parametrization scheme in the 12 km domain was turned off. This experiment simulated the offshore and onshore rainfall phases correctly to some extent but the rainfall intensity was unrealistically high. Thus, a model with a horizontal grid spacing of , in which convection evolves explicitly, is desired for simulating the west‐coast rainfall variations. However, improvements in the representation of boundary‐layer processes are needed to capture the land–sea contrast.

Funder

Newton Fund

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3