An Assessment of the Biases of Satellite Rainfall Estimates over the Tibetan Plateau and Correction Methods Based on Topographic Analysis

Author:

Yin Zhi-Yong1,Zhang Xueqin2,Liu Xiaodong3,Colella Mike4,Chen Xiaoling5

Affiliation:

1. Marine Science and Environmental Studies, University of San Diego, San Diego, California, and SKLLQG, Institute of Earth Environment, Chinese Academy of Science, Xi’an, China

2. Institute of Geographical Science and Natural Resources Research, Chinese Academy of Science, Beijing, China

3. SKLLQG, Institute of Earth Environment, Chinese Academy of Science, Xi’an, China

4. Marine Science and Environmental Studies, University of San Diego, San Diego, California

5. LIESMARS, Wuhan University, Wuhan, China

Abstract

Abstract The hydrological processes over the Tibetan Plateau have significant implications on regional macroscale atmospheric circulation patterns and the Asian monsoon system. Because of its remote setting and lack of ground observations, it is difficult to study the spatial and temporal patterns of precipitation over the plateau, and satellite remote sensing technology can be used to fill in the gaps where station data are not available. In this study the authors examine monthly 1° × 1° rainfall estimates obtained from the Special Sensor Microwave Imager (SSM/I) [National Environmental Satellite, Data, and Information Service (NESDIS) algorithm] and Tropical Rainfall Measuring Mission (TRMM) 3B42 version 5 (V5) products for the months of April–October 1998–2002 over the Tibetan Plateau. By comparing the satellite estimates with ground observations at 94 weather stations in the study region, the authors derived regression models that produced significant improvements to satellite estimates based on various levels of correction efforts, using geographic location and topographic variables extracted from digital elevation models using geographic information systems (GIS) technology. The explained variance in observed precipitation was improved from 34% to 38% by SSM/I and TRMM 3B42 V5 products alone to over 70% when location and topographic variables were added. These topographic variables reflect micro- to mesoscale surface roughness, height of topographic features or relief, slopes facing toward or away from the moisture pathways, and relative locations or directions to prominent topographic features such as mountain peaks and ridgelines.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3