A Retrospective Hydrological Uncertainty Analysis Using Precipitation Estimation Ensembles for a Poorly Gauged Basin in High Mountain Asia

Author:

Reggiani Paolo1ORCID,Boyko Oleksiy1ORCID

Affiliation:

1. a Research Institute for Water and Environment, Department of Civil Engineering, University of Siegen, Paul-Bonatz Strasse, Siegen, Germany

Abstract

Abstract We study the impact of uncertain precipitation estimates on simulated streamflows for the poorly gauged Yarlung Tsangpo basin (YTB), high mountain Asia (HMA). A process-based hydrological model at 0.5-km resolution is driven by an ensemble of precipitation estimation products (PEPs), including analyzed ground observations, high-resolution precipitation estimates, climate data records, and reanalyses over the 2008–15 control period. The model is then forced retrospectively from 1983 onward to obtain seamless discharge estimates till 2007, a period for which there is very sparse flow data coverage. Whereas temperature forcing is considered deterministic, precipitation is sampled from the predictive distribution, which is obtained through processing PEPs by means of a probabilistic processor of uncertainty. The employed Bayesian processor combines the PEPs and outputs the predictive densities of daily precipitation depth accumulation as well as the probability of precipitation occurrence, from which random precipitation fields for probabilistic model forcing are sampled. The predictive density of precipitation is conditional on the precipitation estimation predictors that are bias corrected and variance adjusted. For the selected HMA study site, discharges simulated from reanalysis and climate data records score lowest against observations at three flow gauging points, whereas high-resolution satellite estimates perform better, but are still outperformed by precipitation fields obtained from analyzed observed precipitation and merged products, which were corrected against ground observations. The applied methodology indicates how missing flows for poorly gauged sites can be retrieved and is further extendable to hydrological projections of climate. Significance Statement We show how to use different precipitation estimates, like computer simulations of weather or satellite observations, in conjunction with all available ground measurements in regions with generally poor meteorological and flow measurement infrastructure. We demonstrate how it is possible to retrieve past unobserved river flows using these estimates in combination with a hydrological computer model for streamflow simulations. The method can help us to better understand the hydrology of poorly gauged regions that play an important role in the distribution of water resources and can be affected by future changes. We applied the method to a large transboundary river basin in China. This basin holds water needed by large, densely populated regions of India that may become water constrained by warmer climate.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Meteorological Society

Reference124 articles.

1. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present);Adler, R. F.,2003

2. The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios;Akhtar, M.,2008

3. Evaluation of precipitation data sets along the Himalayan front;Andermann, C.,2011

4. A method for producing and evaluating probabilistic forecasts from ensemble model integrations;Anderson, J. L.,1996

5. GLOBCOVER: The most detailed portrait of Earth;Arino, O.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3