Predicting the Real-Time Multivariate Madden–Julian Oscillation Index through a Low-Order Nonlinear Stochastic Model

Author:

Chen Nan1,Majda Andrew J.1

Affiliation:

1. Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York

Abstract

Abstract A new low-order nonlinear stochastic model is developed to improve the predictability of the Real-time Multivariate Madden–Julian oscillation (MJO) index (RMM index), which is a combined measure of convection and circulation. A recent data-driven, physics-constrained, low-order stochastic modeling procedure is applied to the RMM index. The result is a four-dimensional nonlinear stochastic model for the two observed RMM variables and two hidden variables involving correlated multiplicative noise defined through energy-conserving nonlinear interaction. The special structure of the low-order model allows efficient data assimilation for the initialization of the hidden variables that facilitates the ensemble prediction algorithm. An information-theoretic framework is applied to the calibration of model parameters over a short training phase of 3 yr. This framework involves generalizations of the anomaly pattern correlation, the RMS error, and the information deficiency in the model forecast. The nonlinear stochastic models show skillful prediction for 30 days on average in these metrics. More importantly, the predictions succeed in capturing the amplitudes of the RMM index and the useful skill of forecasting strong MJO events is around 40 days. Furthermore, information barriers to prediction for linear models imply the necessity of the nonlinear interactions between the observed and hidden variables as well as the multiplicative noise in these low-order stochastic models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3