Parameter Estimation of Partially Observed Turbulent Systems Using Conditional Gaussian Path-Wise Sampler

Author:

Zhang Ziheng,Chen Nan

Abstract

Parameter estimation of complex nonlinear turbulent dynamical systems using only partially observed time series is a challenging topic. The nonlinearity and partial observations often impede using closed analytic formulae to recover the model parameters. In this paper, an exact path-wise sampling method is developed, which is incorporated into a Bayesian Markov chain Monte Carlo (MCMC) algorithm in light of data augmentation to efficiently estimate the parameters in a rich class of nonlinear and non-Gaussian turbulent systems using partial observations. This path-wise sampling method exploits closed analytic formulae to sample the trajectories of the unobserved variables, which avoid the numerical errors in the general sampling approaches and significantly increase the overall parameter estimation efficiency. The unknown parameters and the missing trajectories are estimated in an alternating fashion in an adaptive MCMC iteration algorithm with rapid convergence. It is shown based on the noisy Lorenz 63 model and a stochastically coupled FitzHugh–Nagumo model that the new algorithm is very skillful in estimating the parameters in highly nonlinear turbulent models. The model with the estimated parameters succeeds in recovering the nonlinear and non-Gaussian features of the truth, including capturing the intermittency and extreme events, in both test examples.

Publisher

MDPI AG

Subject

Applied Mathematics,Modelling and Simulation,General Computer Science,Theoretical Computer Science

Reference81 articles.

1. Introduction to Turbulent Dynamical Systems in Complex Systems;Majda,2016

2. Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering;Strogatz,2018

3. Multiscale model for turbulent flows

4. Principles of complex systems for systems engineering

5. Data Assimilation;Law,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3