Statistics and Possible Sources of Aviation Turbulence over South Korea

Author:

Kim Jung-Hoon1,Chun Hye-Yeong1

Affiliation:

1. Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Abstract

Abstract The characteristics of aviation turbulence over South Korea during the recent five years (2003–08, excluding 2005) are investigated using pilot reports (PIREPs) accumulated by the Korea Aviation Meteorological Agency (KAMA). Among the total of 8449 PIREPs, 4607 (54.53%), 1646 (19.48%), 248 (2.94%), 7 (0.08%), and 1941 (22.97%) correspond to the turbulence categories of null, light, moderate, severe, and missing, respectively. In terms of temporal variations, the annual total number of turbulence events increased from 2003 to 2008, and the seasonal frequency is the highest in the spring. With regard to spatial distributions, reported turbulence encounters are dominant along the prevailing flight routes, but are locally higher over the west coast, Jeju Island, and the Sobaek and Taebaek mountains. The turbulence events in these regions vary by season. To examine the regional differences and possible sources of the observed turbulence, lightning flash data, Regional Data Assimilation and Prediction System (RDAPS) analysis data with a 30-km horizontal grid spacing provided by the Korean Meteorological Administration (KMA), and a digital elevation model (DEM) dataset with a 30-s resolution, are additionally used. Convectively induced turbulence (CIT) and clear-air turbulence (CAT) events comprised 11% and 89% of the total 255 moderate or greater (MOG)-level turbulence events, respectively. CAT events are classified as tropopause/jet stream–induced CAT (TJCAT) and mountain-wave-induced CAT (MWCAT) events. The MOG-level TJCAT and MWCAT events are responsible for 41.2% and 19.6% of the total MOG-level turbulence events, respectively. The CIT events in summer and the TRCAT and MWCAT events in spring occur most frequently over the previously mentioned regions of South Korea, associated with specific generation mechanisms.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference38 articles.

1. Effects of mountain-induced gravity wave drag on atmospheric general circulation (in Korean with English abstract).;Chun;J. Kor. Meteor. Soc.,1996

2. Origins of aircraft-damaging clear-air turbulence during the 9 December 1992 Colorado downslope windstorm.;Clark;J. Atmos. Sci.,2000

3. An update on the FAA Aviation Weather Research Program’s in situ turbulence measurement and report system.;Cornman,2004

4. Large-amplitude mountain wave breaking over Greenland.;Doyle;J. Atmos. Sci.,2005

5. Clear air turbulence: A mystery may be unfolding.;Dutton;Science,1970

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3