Comparison of Eddy Dissipation Rate Estimated From Operational Radiosonde and Commercial Aircraft Observations in the United States

Author:

Ko Han‐Chang1ORCID,Chun Hye‐Yeong1ORCID,Sharman Robert D.2ORCID,Kim Jung‐Hoon3ORCID

Affiliation:

1. Department of Atmospheric Sciences Yonsei University Seoul South Korea

2. National Center for Atmospheric Research Boulder CO USA

3. School of Earth and Environmental Sciences Seoul National University Seoul South Korea

Abstract

AbstractThe one‐third power of the energy dissipation rate (EDR), a primary aviation turbulence metric, is calculated using high vertical‐resolution radiosonde data (HVRRD) and compared with flight‐EDR observed from commercial airlines. Comparisons are made along the main flight routes over the United States and at z = 20–45 kft for 6 years (2012–2017). The horizontal distributions of moderate‐or‐greater (MOG) ratio of HVRRD‐EDR show large values over the Rocky Mountains, consistent with those of flight‐EDR. Vertically, the MOG ratios of HVRRD‐EDR show local peaks at z = 20–23 kft and 41–44 kft, while those of flight‐EDR at z = 23–26 kft and 35–41 kft. Temporally, HVRRD‐EDR has maximum MOG values in JJA and minimum values in DJF at z = 20–30 kft, which is opposite to the flight‐EDR. At z = 30–40 kft, HVRRD‐EDR shows nearly no seasonal variation but flight‐EDR has large values in MAM and small values in JJA. At z = 40–45 kft, HVRRD‐EDR (flight‐EDR) shows large values in MAM and small values in SON (DJF). Discrepancies in spatiotemporal distributions between the two data sets likely stem from: (a) turbulence observed from the two data sets cannot be the same event, (b) the limitation of HVRRD‐EDR in capturing shear‐instability under statically stable condition (i.e., Kelvin‐Helmholtz instability) which probably accounts for most flight‐EDR events at upper levels, and (c) limitation in aircraft measurements response to fluctuations at smaller scales than the aircraft size.

Funder

Korea Meteorological Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3