On Turbulence and Mixing in the Free Atmosphere Inferred from High-Resolution Soundings

Author:

Clayson Carol Anne1,Kantha Lakshmi2

Affiliation:

1. Department of Meteorology, and Geophysical Fluid Dynamics Institute, The Florida State University, Tallahassee, Florida

2. Department of Aerospace Engineering, University of Colorado, Boulder, Colorado

Abstract

Abstract Mixing in the free atmosphere above the planetary boundary layer is of great importance to the fate of trace gases and pollutants. However, direct measurements of the turbulent dissipation rate by in situ probes are very scarce and radar measurements are fraught with uncertainties. In this paper, turbulence scaling concepts, developed over the past decades for application to oceanic mixing, are used to suggest an alternative technique for retrieving turbulence properties in the free atmosphere from high-resolution soundings. This technique enables high-resolution radiosondes, which have become quite standard in the past few years, to be used not only to monitor turbulence in the free atmosphere in near–real time, but also to study its spatiotemporal characteristics from the abundant archives of high-resolution soundings from around the world. Examples from several locations are shown, as well as comparisons with radar-based estimations and a typical Richardson number–based parameterization.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3