Convective Couplings with Equatorial Rossby Waves and Equatorial Kelvin Waves. Part I: Coupled Wave Structures

Author:

Abstract

Abstract This study investigates precipitation amounts and apparent heat sources, which are coupled with equatorial Kelvin waves and equatorial Rossby waves, using TRMM PR level 2 data products. The synoptic structures of wave disturbances are also studied using the ERA5 dataset. We define the wave phase of equatorial waves based on FFT-filtered brightness temperature and conduct composite analyses. Rossby waves show a vertically upright structure and their upright vortices induce large-amplitude column water vapor (CWV) anomalies. Precipitation activity is almost in phase with CWV, and thus is consistent with a moisture mode. Kelvin waves, on the other hand, indicate a nearly quadrature phase relationship between temperature and vertical velocity, like gravity wave structure. Specific humidity develops from near the surface to the middle troposphere as the Kelvin wave progresses. A clear negative CWV anomaly also does not exist despite the existence of negative precipitation anomalies. Convective activity corresponds well with its tilting structure of moisture and modulates the phase relationship between temperature and vertical motion. For both wave cases, apparent heat sources can amplify available potential energy despite the difference of coupling mechanisms of these two waves; precipitation is driven by CWV fluctuation for the Rossby wave case, and by buoyancy-based fluctuations for the Kelvin wave case. These can be observational evidence of actual coupling processes that is comparable to previous idealized studies. Significance Statement A coupling mechanism between equatorial waves and convective activity is a significant issue in tropical meteorology. While many previous idealized studies suggested some instability mechanisms, their true roles are not yet clear because detailed precipitation characteristics are not well investigated. We aim to quantify precipitation and synoptic-scale wave disturbances, and compare equatorial Rossby waves and equatorial Kelvin waves, which should have different instability coupling modes between each other, in order to shed light on a convectively coupling mechanism. We found that precipitation is actually driven by column moisture in Rossby waves and by dynamical fluctuation in Kelvin waves. Despite these competing mechanisms, similar top-heavy heating can maintain convectively coupled disturbances. Our observational results will support and improve theoretical studies.

Funder

Japan Aerospace Exploration Agency

Environmental Restoration and Conservation Agency

the University of Tokyo

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3