Using Ensemble Data Assimilation to Explore the Environmental Controls on the Initiation and Predictability of Moist Convection

Author:

Abstract

Abstract Atmospheric deep moist convection has emerged as one of the most challenging topics for numerical weather prediction, due to its chaotic process of development and multi-scale physical interactions. This study examines the dynamics and predictability of a weakly organized linear convective system using convection permitting EnKF analysis and forecasts with assimilating all-sky satellite radiances from a water vapor sensitive band of the Advanced Baseline Imager on GOES-16. The case chosen occurred over the Gulf of Mexico on 11 June 2017 during the NASA Convective Processes Experiment (CPEX) field campaign. Analysis of the water vapor and dynamic ensemble covariance structures revealed that meso-α (2000-200 km) and meso-β (200-20 km) scale initial features helped to constrain the general location of convection with a few hours of lead time, contributing to enhancing convective activity, but meso-γ (20-2 km) or even smaller scale features with less than 30-minute lead time were identified to be essential for capturing individual convective storms. The impacts of meso-α scale initial features on the prediction of particular individual convective cells were found to be classified into two regimes; in a relatively dry regime, the meso-α scale environment needs to be moist enough to support the development of the convection of interest, but in a relatively wet regime, a drier meso-α scale environment is preferable to suppress the surrounding convective activity. This study highlights the importance of high-resolution initialization of moisture fields for the prediction of a quasi-linear tropical convective system, as well as demonstrating the accuracy that may be necessary to predict convection exactly when and where it occurs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3