Simultaneous Assimilation of Planetary Boundary Layer Observations from Radar and All-Sky Satellite Observations to Improve Forecasts of Convection Initiation

Author:

Eure Keenan C.1,Mykolajtchuk Paul D.1,Zhang Yunji1,Stensrud David J.1,Zhang Fuqing1,Greybush Steven J.1,Kumjian Matthew R.1

Affiliation:

1. Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract Accurate predictions of the location and timing of convection initiation (CI) remain a challenge, even in high-resolution convection allowing models (CAMs). Many of the processes necessary for daytime CI are rooted in the planetary boundary layer (PBL), which numerical models struggle to accurately predict. To improve ensemble forecasts of the PBL and subsequent CI forecasts in CAM ensembles, we explore the use of underused data from both the GOES-16 satellite and the national network of WSR-88D radars. The GOES-16 satellite provides observations of brightness temperature (BT) to better analyze cloud structures, while the WSR-88D radars provide PBL height estimates and clear-air radial wind velocity observations to better analyze PBL structures. The CAM uses the Advanced Research Weather Research and Forecasting (WRF-ARW) model at 3-km horizontal grid spacing. The ensemble consists of 40 members and observations are assimilated using the Gridpoint Statistical Interpolation (GSI) Ensemble Kalman Filter (EnKF) system. To evaluate the influence of each observation type on CI, conventional, WSR-88D, and GOES-16 observations are assimilated separately and jointly over a 4-h period and the resulting ensemble analyses and forecasts are compared with available observations for a CI event on 18 May 2018. Results show that the addition of the WSR-88D and GOES-16 observations improves the CI forecasts out several hours in terms of timing and location for this case.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3