A Linear Relationship between Vertical Velocity and Condensation Processes in Deep Convection

Author:

Grant Leah D.1ORCID,van den Heever Susan C.1,Haddad Ziad S.2,Bukowski Jennie1,Marinescu Peter J.13,Storer Rachel L.24,Posselt Derek J.2,Stephens Graeme L.2

Affiliation:

1. a Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

2. b Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

3. c Cooperative Institute for Research in the Atmosphere, Fort Collins, Colorado

4. d Joint Institute for Regional Earth System Science and Engineering, University of California Los Angeles, Los Angeles, California

Abstract

Abstract Vertical velocities and microphysical processes within deep convection are intricately linked, having wide-ranging impacts on water and mass vertical transport, severe weather, extreme precipitation, and the global circulation. The goal of this research is to investigate the functional form of the relationship between vertical velocity (w) and microphysical processes that convert water vapor into condensed water (M) in deep convection. We examine an ensemble of high-resolution simulations spanning a range of tropical and midlatitude environments, a variety of convective organizational modes, and different model platforms and microphysics schemes. The results demonstrate that the relationship between w and M is robustly linear, with the slope of the linear fit being primarily a function of temperature and secondarily a function of supersaturation. The R2 of the linear fit is generally above 0.6 except near the freezing and homogeneous freezing levels. The linear fit is examined both as a function of local in-cloud temperature and environmental temperature. The results for in-cloud temperature are more consistent across the simulation suite, although environmental temperatures are more useful when considering potential observational applications. The linear relationship between w and M is substituted into the condensate tendency equation and rearranged to form a diagnostic equation for w. The performance of the diagnostic equation is tested in several simulations, and it is found to diagnose the storm-scale updraft speeds to within 1 m s−1 throughout the upper half of the clouds. Potential applications of the linear relationship between w and M and the diagnostic w equation are discussed.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3