The Decreased Cloud Cover Dominated the Rapid Spring Temperature Rise in Arid Central Asia Over the Period 1980–2014

Author:

Wang Gongxin12ORCID,Yuan Xiuliang13ORCID,Jing Changqing2,Hamdi Rafiq14,Ochege Friday Uchenna1,Dong Ping2,Shao Yuqing2,Qin Xueyan13

Affiliation:

1. State Key Laboratory of Desert and Oasis Ecology Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences Urumqi China

2. College of Grassland Science Xinjiang Agricultural University Urumqi China

3. University of Chinese Academy of Sciences Beijing China

4. Royal Meteorological Institute Brussels Belgium

Abstract

AbstractCentral Asia (CA) has experienced a faster temperature rise than the global land over the past decades. However, the role of regional/global drivers and their associated underlying biophysical mechanisms is poorly explored. Here, we combined observations and model simulations to show that the rapid warming in CA was overwhelmingly contributed by rapid spring warming (i.e., 49.23%). The decrease of cloud cover (CLD) was the main driver of spring warming in CA, leading to the surface receiving more solar radiation, consequently heating the surface air temperature, and contributing almost 40.79% to the spring warming. Besides, the strengthening of sea level pressure states results in continuous subsidence of vertical motion over CA, which was unfavorable for cloud formation. Our study will deepen our understanding of the climate evolution in the arid CA.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3