The Ice Particle and Aggregate Simulator (IPAS). Part III: Verification and Analysis of Ice–Aggregate and Aggregate–Aggregate Collection for Microphysical Parameterization

Author:

Przybylo Vanessa M.1ORCID,Sulia Kara J.1,Lebo Zachary J.2,Schmitt Carl G.3

Affiliation:

1. a University at Albany, State University of New York, Albany, New York

2. b University of Wyoming, Laramie, Wyoming

3. c NCAR, Boulder, Colorado

Abstract

Abstract The Ice Particle and Aggregate Simulator (IPAS) is used to theoretically represent the aggregation process of ice crystals. Aggregates have a variety of formations based on initial ice particle size, shape, and falling orientation, all of which influence water phase partitioning. Aggregate dimensional properties and density changes are calculated for monomer–monomer (MON–MON), monomer–aggregate (MON–AGG), and aggregate–aggregate (AGG–AGG) collection to be used by ice-microphysical models for improvement in aggregation parameterizations. Aggregates are chosen from a database of 9 744 000 preformed combinations to be further collected (see Part II). AGG–AGG collection results in more extreme and a smaller range of aggregate aspect ratios than MON–AGG collection. A majority of aggregates are closer to prolate than oblate spheroids, regardless of collection type, except for quasi-horizontally oriented particles that have extreme aspect ratios to begin with. MON–AGG collection frequently results in an increase in density upon collection, whereas MON–MON and AGG–AGG collection almost always result in particle density decreases, with extreme reductions near 99% for MON–MON collection. MON–MON collection results in the greatest decreases in density but then quickly becomes unaffected by the addition of more monomers due to inherent size differences between monomers and aggregates. Finally, a holistic analysis to in situ observations of cloud particle images is presented. IPAS 2D aspect ratios surround a median value of 0.6 and closely follow that of previous studies while varying by no more than ≈12% on average from observed aggregates.

Funder

u.s. department of energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3