Criticality in the Shallow-to-Deep Transition of Simulated Tropical Marine Convection

Author:

Powell Scott W.1

Affiliation:

1. a Department of Meteorology, Naval Postgraduate School, Monterey, California

Abstract

Abstract Idealized simulations of tropical, marine convection depict shallow, nonprecipitating cumuli located beneath the 0°C level transitioning into cumulonimbi that reach up to 12 km and higher. The timing of the transition was only weakly related to environmental stability, and 13 of the 15 simulations run with 5 different lapse-rate profiles had rain develop at nearly the same time after model start. The key quantity that apparently controlled deep convective formation was vertical acceleration inside cloudy updrafts between cloud base and the 0°C level. Below a critical value of updraft vertical acceleration, little rainfall occurred. Just as the domain-mean updraft acceleration reached the critical value, the first convection quickly grew to past 12 km altitude. Then, as acceleration increased above the critical value, rain rate averaged in the model domain increased quickly over about a 3-h-long period. The specific value of the critical updraft acceleration depended on how updrafts were defined and in what layer the acceleration was averaged; however, regardless of how criticality was defined, a robust relationship between domain-mean updraft vertical acceleration and rain rate occurred. Positive acceleration of updrafts below the 0°C level was present below 2.75 km and was largest in the 500 m above cloud base. However, the maximum difference between updraft and environmental temperatures occurred between 2 and 3 km. The domain-mean Archimedean buoyancy of updrafts relative to some reference state was a poor predictor for domain-mean rain rate. The exact value of the critical updraft acceleration likely depends on numerous other factors that were not investigated. Significance Statement A numerical model is utilized to investigate potential thermodynamic and dynamic quantities related to the growth of cumulus clouds into cumulonimbus clouds over tropical oceans when the atmosphere is sufficiently moist to support rainfall. Archimedean buoyancy alone cannot be used to predict rain rate reliably. Instead the total buoyancy not relative to an arbitrary reference state must be considered. The simulated relationship between total vertical acceleration in updrafts and rain rate was robust. While the processes that control the vertical acceleration remain unclear, our results highlight the importance of observing processes that occur on spatial scales of tens of meters and temporal scales of a few minutes.

Funder

Office of Naval Research

Biological and Environmental Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3