Exploring the Role of Deep Moist Convection in the Wavenumber Spectra of Atmospheric Kinetic Energy and Brightness Temperature

Author:

Fan Da12ORCID,Greybush Steven J.12,Chen Xingchao12,Lu Yinghui12,Zhang Fuqing12,Young George S.12

Affiliation:

1. a Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

2. b Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract Through a series of global convection-permitting simulations and geostationary satellite observations, this study investigates the role of deep moist convection in atmospheric kinetic energy (KE) and brightness temperature (BT) spectra in a realistic framework. The control simulation was produced on a quasi-uniform 3-km global mesh, which allowed the explicit representation of deep convection. To assess the impact of deep moist convection, a fake-dry simulation was performed with latent heating–cooling feedback in the microphysics removed for comparison. The impacts of deep moist convection on mesoscale KE spectrum are concentrated on energizing the mesoscale at the upper troposphere and the lower stratosphere through buoyancy production. BT spectra for the control simulation have a similar shallow slope in the mesoscale as that for the observations. The greater spectral power of BT for the control simulation compared to the observed is attributed to the dislocation and higher intensity of simulated convection. The observed BT spectra exhibit a large diurnal variability due to the diurnal variation of the intensity of convection. The simulated BT spectrum is dependent on convective systems at different scales. Deep convection in the intertropical convergence zone (ITCZ) and shallow convection in the North Pacific storm-track region play an important role in energizing the convective scale of the BT spectrum. In the mesoscale, the BT spectrum is mainly energized by mesoscale convective systems (MCSs) in the ITCZ. Tropical equatorial waves and baroclinic waves in the southern midlatitudes are critical in producing the shallow slope near −5/3 and providing energy in the BT spectrum at the synoptic scale. Significance Statement We further explore the role of deep moist convection in kinetic energy and brightness temperature spectra through high-resolution radiance observations and convection-permitting simulations. Moist processes can energize the mesoscale of kinetic energy. Brightness temperature spectra show dependence on convective systems at different scales. These results point the way toward a new approach to evaluate the predictability of convective systems, and future development of model dynamics and parameterization.

Funder

National Science Foundation

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference54 articles.

1. The Illustrated Wavelet Transform Handbook.;Addison, P. S.,2002

2. Two-Dimensional Wavelets and Their Relatives. Cambridge University Press;Antoine, J.-P.,2004

3. Interaction of a cumulus cloud ensemble with the large-scale environment, part I;Arakawa, A.,1974

4. Resolution requirements for the simulation of deep moist convection;Bryan, G. H.,2003

5. Spherical harmonic spectral estimation on arbitrary grids;Cavanaugh, N. R.,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3