Response of the Kuroshio Extension to Rossby Waves Associated with the 1970s Climate Regime Shift in a High-Resolution Ocean Model*

Author:

Taguchi Bunmei1,Xie Shang-Ping1,Mitsudera Humio2,Kubokawa Atsushi3

Affiliation:

1. Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

2. Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan

3. Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Japan

Abstract

Abstract The response of the Kuroshio Extension (KE) to large-scale Rossby waves remotely excited by wind stress changes associated with the 1970s climate regime shift is studied using a high-resolution regional ocean model. Two ensemble simulations are conducted: The control run uses monthly climatological forcing while, in the second ensemble, anomalous forcing is imposed at the model eastern boundary around 165°E derived from a hindcast of decadal changes in subsurface temperature and salinity using a coarser-resolution model of the Pacific basin. Near the KE, ocean adjustment deviates strongly from the linear Rossby wave dynamics. Most notably, the eastward acceleration of the KE is much narrower in meridional extent than that associated with the incoming Rossby waves imposed on the eastern boundary. This KE acceleration is associated with an enhanced potential vorticity (PV) gradient across the front that is consistent with the inertial western boundary layer theory: the arrival of the Rossby waves at the western boundary causes the eastward current to accelerate, leading to enhanced advection of low (high) PV water of subtropical (subarctic) origin along the western boundary layer. The meridional dipole of PV anomalies results in a pair of anomalous recirculations with a narrow eastward jet in between. A three-layer quasigeostrophic model is used to demonstrate this inertial adjustment mechanism. Finally, transient eddy activity increases significantly and the eddy momentum transport acts to strengthen the mean flow response. The result that ocean physical response to broad-scale atmospheric forcing is large near the KE front has important implications for fisheries research.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3