Improving Precipitation Forecasts with Convolutional Neural Networks

Author:

Badrinath Anirudhan1,Delle Monache Luca2,Hayatbini Negin2,Chapman Will2,Cannon Forest2,Ralph Marty2

Affiliation:

1. a Department of Computer Science, University of California Berkeley, Berkeley, California, United States

2. b Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States

Abstract

Abstract A machine learning method based on spatial convolution to capture complex spatial precipitation patterns is proposed to identify and reduce biases affecting predictions of a dynamical model. The method is based on a combination of a classification and dual regression model approach using modified U-Net convolutional neural networks (CNN) to post-process daily accumulated precipitation over the US west coast. In this study, we leverage 34 years of high resolution deterministic Western Weather Research and Forecasting (West-WRF) precipitation reforecasts as training data for the U-Net CNN. The data is split such that the test set contains 4 water years of data that encompass characteristic west coast precipitation regimes: El Niño, La Niña, and dry and wet El Niño/Southern Oscillation (ENSO-neutral) water years. On the unseen 4-year data set, the trained CNN yields a 12.9-15.9% reduction in root mean square error (RMSE) and 2.7-3.4% improvement in Pearson correlation (PC) over West-WRF for lead times of 1-4 days. Compared to an adapted model output statistics correction, the CNN reduces RMSE by 7.4-8.9% and improves PC by 3.3-4.2% across all events. Effectively, the CNN adds more than a day of predictive skill when compared to West-WRF. The CNN outperforms the other methods also for the prediction of extreme events, which we define as the top 10% of events with the greatest average daily accumulated precipitation. The improvement over West-WRF’s RMSE/PC for these events is 19.8-21.0%/4.9-5.5% and MOS’s RMSE/PC is 8.8-9.7%/4.2-4.7%. Hence, the proposed U-Net CNN shows significantly improved forecast skill over existing methods, highlighting a promising path forward for improving precipitation forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3