Quantification of NSSL Warn-on-Forecast System Accuracy by Storm Age Using Object-Based Verification

Author:

Guerra Jorge E.1ORCID,Skinner Patrick S.1,Clark Adam1,Flora Montgomery1,Matilla Brian1,Knopfmeier Kent1,Reinhart Anthony E.1

Affiliation:

1. a Cooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma

Abstract

Abstract The National Severe Storm Laboratory’s Warn-on-Forecast System (WoFS) is a convection-allowing ensemble with rapidly cycled data assimilation (DA) of various satellite and radar datasets designed for prediction at 0–6-h lead time of hazardous weather. With the focus on short lead times, WoFS predictive accuracy is strongly dependent on its ability to accurately initialize and depict the evolution of ongoing storms. Since it takes multiple DA cycles to fully “spin up” ongoing storms, predictive skill is likely a function of storm age at the time of model initialization, meaning that older storms that have been through several DA cycles will be forecast with greater accuracy than newer storms that initiate just before model initialization or at any point after. To quantify this relationship, we apply an object-based spatial tracking and verification approach to map differences in the probability of detection (POD), in space–time, of predicted storm objects from WoFS with respect to Multi-Radar Multi-Sensor (MRMS) reflectivity objects. Object-tracking/matching statistics are computed for all suitable and available WoFS cases from 2017 to 2021. Our results indicate sharply increasing POD with increasing storm age for lead times within 3 h. PODs were about 0.3 for storm objects that emerge 2–3 h after model initialization, while for storm objects that were at least an hour old at the time of model initialization by DA, PODs ranged from around 0.7 to 0.9 depending on the lead time. These results should aid in forecaster interpretation of WoFS, as well as guide WoFS developers on improving the model and DA system. Significance Statement The Warn-on-Forecast System (WoFS) is a collection of weather models designed to predict individual thunderstorms. Before the models can predict storms, they must ingest radar and satellite observations to put existing storms into the models. Because storms develop at different times, more observations will exist for some storms in the model domain than others, which results in WoFS forecasts with different accuracy for different storms. This paper estimates the differences in accuracy for storms that have existed for a long time and those that have not by tracking observed and predicted storms. We find that the likelihood of WoFS accurately predicting a thunderstorm nearly doubles if the storm has existed for over an hour prior to the forecast. Understanding this relationship between storm age and forecast accuracy will help forecasters better use WoFS predictions and guide future research to improve WoFS forecasts.

Funder

NOAA Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3