On the Changes in Convection-Allowing WRF Forecasts of MCS Evolution due to Decreases in Model Horizontal and Vertical Grid Spacing. Part II: Impacts on QPFs

Author:

Squitieri Brian J.1,Jr. William A. Gallus1

Affiliation:

1. a Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Abstract

Abstract Several past studies have demonstrated improvement in forecasting convective precipitation by decreasing model grid spacing to the point of explicitly resolving deep convection. Real-case convective modeling studies have attempted to identify what model grid spacing feasibly provides the most optimal forecast given computational constraints. While Part I of this manuscript investigated changes in MCS cold pool characteristics with varied vertical and horizontal grid spacing, Part II explores changes in skill for MCS spatial placement, forward speed, and QPFs among runs with decreased horizontal and vertical grid spacing by employing the same WRF-ARW runs as in Part I. QPF forecast skill significantly improved for later portions of the MCS life cycle when decreasing horizontal grid spacing from 3 to 1 km with the part double-moment Thompson microphysics scheme. Some improvements were present in QPFs with higher precipitation amounts in the early stages of MCSs simulated with the single-moment WSM6 microphysics scheme. However, significant improvements were not common with MCS placement or QPF of the entire precipitation swath with either the Thompson or WSM6 schemes, suggesting that the benefit to MCS QPFs with decreased horizontal grid spacings is limited. Furthermore, increasing vertical resolution from 50 to 100 levels worsened WSM6 scheme QPF skill in some cases, suggesting that choices of or improvement in model physics may be equally or more positively impactful to NWP forecasts than grid spacing changes.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3