Improved Seasonal Forecast Skill of Pan-Arctic and Regional Sea Ice Extent in CanSIPS Version 2

Author:

Martin Joseph12ORCID,Monahan Adam1,Sigmond Michael13

Affiliation:

1. a University of Victoria, Victoria, British Columbia, Canada

2. b Royal Canadian Navy, Esquimalt, British Columbia, Canada

3. c Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, British Columbia, Canada

Abstract

Abstract This study assesses the forecast skill of the Canadian Seasonal to Interannual Prediction System (CanSIPS), version 2, in predicting Arctic sea ice extent on both the pan-Arctic and regional scales. In addition, the forecast skill is compared to that of CanSIPS, version 1. Overall, there is a net increase of forecast skill when considering detrended data due to the changes made in the development of CanSIPSv2. The most notable improvements are for forecasts of late summer and autumn target months that have been initialized in the months of April and May that, in previous studies, have been associated with the spring predictability barrier. By comparison of the skills of CanSIPSv1 and CanSIPSv2 to that of an intermediate version of CanSIPS, CanSIPSv1b, we can attribute skill differences between CanSIPSv1 and CanSIPSv2 to two main sources. First, an improved initialization procedure for sea ice initial conditions markedly improves forecast skill on the pan-Arctic scale as well as regionally in the central Arctic, Laptev Sea, Sea of Okhotsk, and Barents Sea. This conclusion is further supported by analysis of the predictive skill of the sea ice volume initialization field. Second, the change in model combination from CanSIPSv1 to CanSIPSv2 (exchanging the constituent CanCM3 model for GEM-NEMO) improves forecast skill in the Bering, Kara, Chukchi, Beaufort, East Siberian, Barents, and the Greenland–Iceland–Norwegian (GIN) Seas. In Hudson and Baffin Bay, as well as the Labrador Sea, there is limited and unsystematic improvement in forecasts of CanSIPSv2 as compared to CanSIPSv1.

Funder

Royal Canadian Navy

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference56 articles.

1. Utilizing CryoSat-2 sea ice thickness to initialize a coupled ice-ocean modeling system;Allard, R. A.,2018

2. Analyzing the impact of CryoSat-2 ice thickness initialization on seasonal Arctic sea ice prediction;Allard, R. A.,2020

3. The 2017 reversal of the Beaufort Gyre: Can dynamic thickening of a seasonal ice cover during a reversal limit summer ice melt in the Beaufort Sea?;Babb, D. G.,2020

4. Forecast skill of the Arctic sea ice outlook 2008–2022;Blanchard-Wrigglesworth, E.,2023

5. Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness;Blockley, E. W.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3