Spatial and subannual variability of the Antarctic Slope Current in an eddying ocean-sea ice model

Author:

Morrison Adele K.1,Hogg Andrew McC.2

Affiliation:

1. Research School of Earth Sciences and the Australian Centre for Excellence in Antarctic Science, Australian National University, Canberra, Australia

2. Research School of Earth Sciences and ARC Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australia

Abstract

Abstract The Antarctic Slope Current (ASC) circumnavigates the Antarctic continent following the continental slope and separating the waters on the continental shelf from the deeper offshore Southern Ocean. Water mass exchanges across the continental slope are critical for the global climate as they impact the global overturning circulation and the mass balance of the Antarctic ice sheet via basal melting. Despite the ASC’s global importance, little is known about its spatial and subannual variability, as direct measurements of the velocity field are sparse. Here, we describe the ASC in a global eddying ocean-sea ice model and reveal its large-scale spatial variability by characterising the continental slope using three regimes: the surface-intensified ASC, the bottom-intensified ASC and the reversed ASC. Each ASC regime corresponds to a distinct classification of the density field as previously introduced in the literature, suggesting that the velocity and density fields are governed by the same leading-order dynamics around the Antarctic continental slope. Only the surface-intensified ASC regime has a strong seasonality. However, large temporal variability at a range of other timescales occurs across all regimes, including frequent reversals of the current. We anticipate our description of the ASC’s spatial and subannual variability to be helpful to guide future studies of the ASC aiming to advance our understanding of the region’s response to a changing climate.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3