Affiliation:
1. Research School of Earth Sciences Australian National University Canberra ACT Australia
2. Australian Centre of Excellence for Climate Extremes Australian National University Canberra ACT Australia
3. Australian Earth System Simulator National Research Infrastructure Australian National University Canberra ACT Australia
Abstract
AbstractThe Antarctic Slope Current is guided by the topographic gradient of the Antarctic continental slope and creates a dynamical barrier between the continental shelf and the open ocean. The current's vertical structure varies around the continent affecting cross‐slope water mass exchange with consequences for Antarctic mass loss, ventilation of the deep ocean, and carbon uptake. The Antarctic Slope Current is surface‐intensified in many regions but bottom‐intensified in regions of dense overflows. This study investigates the role of dense overflows in modifying the dynamics of the bottom‐intensified flow using a 0.1° global ocean‐sea ice model. The occurrence of bottom‐intensification is tightly linked with dense overflows and bottom speeds correlate with dense overflows on interannual time scales. A lack of vertical connectivity between the bottom and surface flow, however, suggests that the along‐slope bottom water flows are coincidentally co‐located with the Antarctic Slope Current, rather than dynamically a part of the current.
Funder
National Computational Infrastructure
Australian Government
Australian Research Council
Climate Extremes
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献