Baroclinic Tidal Cusps from Satellite Altimetry

Author:

Zaron Edward D.1ORCID

Affiliation:

1. a Oregon State University, Corvallis, Oregon

Abstract

Abstract The spatially averaged frequency spectrum of sea level has been computed at 4 cycle-per-year resolution and a Nyquist frequency of 0.5 cycles per hour using dual-satellite crossover data from the Jason and CryoSat-2 satellite altimeter missions. The novelty of the analysis is that it reveals unambiguous peaks due to high-frequency tidal signals, even after removing the predicted barotropic tide, without the usual aliasing caused by altimeter sampling. The tidal continuum, that is, a tidal cusp, is present in the spectrum in the diurnal and semidiurnal tidal bands, and a Lorentzian model spectrum has been fit within each band to identify the properties of the non-phase-locked tidal variability. An interesting feature of the semidiurnal tidal continuum is the unambiguous presence of an inner and an outer band, characterized by different Lorentzian bandwidths of roughly (180 day)−1 and (30 day)−1. Considering different latitude ranges, it is clear that the tidal continuum is most prominent in the range from −30° to 30° latitude. Within this range, it is found that 1.05-cm2 variance is associated with the semidiurnal continuum, and slightly less than half of this variance, 0.41 cm2, is associated with the slower, (180 day)−1 bandwidth, variability. The ratio of non-phase-locked to total baroclinic variability is about 62% in this latitude band, a value that is consistent with previous model-based estimates for this quantity. Quantification of the properties of the tidal continuum poleward of 30° latitude is not possible with the present data, due to the small size of the tidal signal compared to the mesoscale variability and other sources of noise.

Funder

national aeronautics and space administration

Publisher

American Meteorological Society

Subject

Oceanography

Reference39 articles.

1. Jason microwave radiometer performance and on-orbit calibration;Brown, S.,2004

2. Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model;Buijsman, M. C.,2016

3. Buijsman, M. C., and Coauthors, 2020: On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations. Ocean Modell., 152, 101656, https://doi.org/10.1016/j.ocemod.2020.101656.

4. Modelling the barotropic response of the global ocean to atmospheric wind and pressure forcing—Comparisons with observations;Carrère, L.,2003

5. New computations of the tide-generating potential;Cartwright, D. E.,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3