Near-Inertial Wave Interactions and Turbulence Production in a Kuroshio Anticyclonic Eddy

Author:

Essink Sebastian1,Kunze Eric2,Lien Ren-Chieh1,Inoue Ryuichiro3,Ito Shin-ichi4

Affiliation:

1. a Applied Physics Laboratory, University of Washington, Seattle, Washington

2. b NorthWest Research Associates, Redmond, Washington

3. c Research Institute for Global Change, Japan Agency for Marine Earth Science and Technology, Yokosuka, Japan

4. d Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan

Abstract

Abstract Interactions between near-inertial waves and the balanced eddy field modulate the intensity and location of turbulent dissipation and mixing. Two EM-APEX profiling floats measured near-inertial waves generated by Typhoons Mindulle, 22 August 2016, and Lionrock, 30 August 2016, near the radius of maximum velocity of a mesoscale anticyclonic eddy in the Kuroshio–Oyashio confluence east of Japan. High-vertical-wavenumber near-inertial waves exhibit energy fluxes inward toward eddy center, consistent with wave refraction/reflection at the eddy perimeter. Near-inertial kinetic energy tendencies are nearly two orders of magnitude greater than observed turbulent dissipation rates ε, indicating propagation/advection of wave packets in and out of the measurement windows. Between 50 and 150 m, ε(10−10) W kg−1, more than an order of magnitude weaker than outside the eddy, pointing to near-inertial wave breaking at different depths or eddy radii. Between 150 and 300 m, small-scale inertial-period patches of intense turbulence with near-critical Ri occur where comparable near-inertial and eddy shears are superposed. Three-dimensional ray-tracing simulations show that wave dynamics at the eddy perimeter are controlled by radial gradients in vorticity and Doppler shifting with much weaker contributions from vertical gradients, stratification, and sloping isopycnals. Surface-forced waves are initially refracted downward and inward, consistent with the observed energy flux. A turning-point shadow zone is found in the upper pycnocline, consistent with weak observed dissipation rates. In summary, the geometry of wave–mean flow interaction creates a shadow zone of weaker near-inertial waves and turbulence in the upper part while turning-point reflections amplify wave shear leading to enhanced dissipation rates in the lower part of the eddy.

Publisher

American Meteorological Society

Subject

Oceanography

Reference58 articles.

1. Improved global maps and 54‐year history of wind‐work on ocean inertial motions;Alford, M. H.,2003

2. Internal tide radiation from Mendocino escarpment;Althaus, A. M.,2003

3. Beta dispersion of inertial waves;Anderson, D. L. T.,1979

4. Refraction and straining of near-inertial waves by barotropic eddies;Asselin, O.,2020

5. Bender, C. M., and S. Orszag, 1978: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, 593 pp.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3