Interpreting Observed Interactions between Near-Inertial Waves and Mesoscale Eddies

Author:

Conn Scott1ORCID,Fitzgerald Joseph1,Callies Jörn1

Affiliation:

1. a California Institute of Technology, Pasadena, California

Abstract

Abstract The evolution of wind-generated near-inertial waves (NIWs) is known to be influenced by the mesoscale eddy field, yet it remains a challenge to disentangle the effects of this interaction in observations. Here, the model of Young and Ben Jelloul (YBJ), which describes NIW evolution in the presence of slowly evolving mesoscale eddies, is compared to observations from a mooring array in the northeast Atlantic Ocean. The model captures the evolution of both the observed NIW amplitude and phase much more accurately than a slab mixed layer model. The YBJ model allows for the identification of specific physical processes that drive the observed evolution. It reveals that differences in the NIW amplitude across the mooring array are caused by the refractive concentration of NIWs into anticyclones. Advection and wave dispersion also make important contributions to the observed wave evolution. Stimulated generation, a process by which mesoscale kinetic energy acts as a source of NIW potential energy, is estimated to be 20 μW m−2 in the region of the mooring array, which is two orders of magnitude smaller than the global average input to mesoscale kinetic energy and likely not an important contribution to the mesoscale kinetic energy budget in this region. Overall, the results show that the YBJ model is a quantitatively useful tool to interpret observations of NIWs.

Funder

Science Mission Directorate

National Science Foundation

Publisher

American Meteorological Society

Subject

Oceanography

Reference48 articles.

1. Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions;Alford, M. H.,2001

2. Revisiting near-inertial wind work: Slab models, relative stress, and mixed layer deepening;Alford, M. H.,2020

3. Near-inertial internal gravity waves in the ocean;Alford, M. H.,2016

4. Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: Application to midocean eddies;Arbic, B. K.,2004

5. Penetration of wind-generated near-inertial waves into a turbulent ocean;Asselin, O.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3