Spontaneous near-inertial wave generation from mesoscale eddy: Energy transformation

Author:

Zhao BoORCID,Zhao YaxingORCID,Liu ZhiliangORCID,Min Wenjia,Wang Weidong

Abstract

The energy transformation between inertial oscillations (IOs), near-inertial waves (NIWs), and mesoscale eddies during spontaneous NIW generation is analyzed by the kinetic energy equations of the multiple temporal–spatial scale interaction between slow and fast motions and then quantitatively estimated by numerical simulations. The evolution of perturbed quasi-geostrophic mesoscale eddies is accompanied by IOs. The nonlinear interaction of IOs and mesoscale eddies results in spontaneous energy transfer from mesoscale eddies to NIWs. However, IOs act as catalysts in the spontaneous NIW energy transformation process, because there is no energy transfer between NIWs and IOs for longer than one inertial period and NIW energy is entirely transferred from mesoscale eddies. The energy conversion rate (ECR) from a propagating eddy to NIWs is significantly enhanced by the resonance of NIWs and the nonlinear coupling of IOs and mesoscale eddies during the spontaneous NIW generation. The time-averaged NIW ECR from a propagating an anti-cyclonic mesoscale eddy (AE) is approximately 5.725 × 10−6 Wm−2 and nearly 16 times higher than those from the standing AE. The magnitude of global near-inertial kinetic energy generated spontaneously from mesoscale eddies is approximately on the order of 2 GW. Therefore, the spontaneous adjustment of mesoscale eddies is a non-negligible NIW generation mechanism and plays a crucial role in the process of supplying energy from mesoscale eddies to the diapycnal mixing in the ocean interior.

Funder

The Natural Science Foundation of Hebei Province

Special Project of Basic Scientific Research Funding in Hebei Normal University of Science and Technology

Doctoral Research Startup Fund Project at Hebei Normal University of Science and Technology

Open project of Hebei Key Laboratory of Marine Dynamic Processes and Resources and Environment

Publisher

AIP Publishing

Reference37 articles.

1. Near-inertial internal gravity waves in the ocean;Annu. Rev. Mar. Sci.,2016

2. Vertical mixing, energy, and the general circulation of the oceans;Annu. Rev. Fluid Mech.,2004

3. Abyssal recipes II: Energetics tidal wind mixing;Deep Sea Res., Part I,1998

4. Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data;J. Geophys. Res.,2001

5. Improved global maps and 54-year history of wind-work on ocean inertial motions;Geophys. Res. Lett.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3