Operational Implementation of COSMIC Observations into NCEP’s Global Data Assimilation System

Author:

Cucurull L.1,Derber J. C.2

Affiliation:

1. Joint Center for Satellite Data Assimilation, Washington, D.C

2. National Centers for Environmental Prediction/Environmental Modeling Center, Washington, D.C

Abstract

Abstract The next generation of NCEP’s Global Data Assimilation System became operational on 1 May 2007. This system incorporates the assimilation of global positioning system (GPS) radio occultation (RO) profiles from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission launched in April 2006. Roughly 1 yr after the launch of COSMIC, NCEP has begun operational use of this new dataset. A preliminary assessment of this observation type was performed with an earlier version of NCEP’s analysis at a lower resolution. These experiments showed positive impact when GPS RO soundings from the Challenging Minisatellite Payload (CHAMP) mission were assimilated into the system in non–real time. In these earlier studies, two different forward operators for the GPS RO profiles were evaluated: one for refractivity and another one for bending angle. In this paper, the data assimilation experiments with COSMIC observations that led NOAA/NCEP to assimilate COSMIC data into operations are described. The experiments were conducted with the current operational version of the code and at full operational resolution. Based on the results of the experiments analyzed here, profiles of refractivity were selected as the type of GPS RO observation to be assimilated. Further enhancement to the assimilation of bending angles is currently being evaluated at NCEP. The results show a significant improvement of the anomaly correlation skill and a global reduction of the NCEP model bias and root-mean-square errors when COSMIC observations are assimilated into the system. The improvement is found for the temperature, geopotential heights, and moisture variables. Larger benefits are found in the Southern Hemisphere extratropics, although a significant positive impact is also found in the Northern Hemisphere extratropics and the tropics. Even if GPS RO observations cannot produce direct impact on the wind field through the adjoint of the forward operator, a slight benefit is found in the wind components.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3