Assimilating MTSAT-Derived Humidity in Nowcasting Sea Fog over the Yellow Sea

Author:

Wang Yongming1,Gao Shanhong1,Fu Gang1,Sun Jilin2,Zhang Suping2

Affiliation:

1. Key Laboratory of Physical Oceanography, Department of Atmospheric Science, Ocean University of China, Qingdao, China

2. Department of Atmospheric Science, Ocean University of China, Qingdao, China

Abstract

Abstract An extended three-dimensional variational data assimilation (3DVAR) method based on the Weather Research and Forecasting Model (WRF) is developed to assimilate satellite-derived humidity from sea fog at its initial stage over the Yellow Sea. The sea fog properties, including its horizontal distribution and thickness, are retrieved empirically from the infrared and visible cloud imageries of the Multifunctional Transport Satellite (MTSAT). Assuming a relative humidity of 100% in fog, the MTSAT-derived humidity is assimilated by the extended 3DVAR assimilation method. Two sea fog cases, one spread widely over the Yellow Sea and the other spread narrowly along the coast, are first studied in detail with a suite of experiments. For the widespread-fog case, the assimilation of MTSAT-derived information significantly improves the forecast of the sea fog area, increasing the probability of detection and equitable threat scores by about 20% and 15%, respectively. The improvement is attributed to a more realistic representation of the marine boundary layer (MBL) and better descriptions of moisture and temperature profiles. For the narrowly spread coastal case, the model completely fails to reproduce the sea fog event without the assimilation of MTSAT-derived humidity. The extended 3DVAR assimilation method is then applied to 10 more sea fog cases to further evaluate its effect on the model simulations. The results reveal that the assimilation of MTSAT-derived humidity not only improves sea fog forecasts but also provides better moisture and temperature structure information in the MBL.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3