Ground Fog Detection from Space Based on MODIS Daytime Data—A Feasibility Study

Author:

Bendix Jörg1,Thies Boris1,Cermak Jan1,Nauß Thomas1

Affiliation:

1. Laboratory for Climatology and Remote Sensing, Faculty of Geography, University of Marburg, Marburg, Germany

Abstract

Abstract The distinction made by satellite data between ground fog and low stratus is still an open problem. A proper detection scheme would need to make a determination between low stratus thickness and top height. Based on this information, stratus base height can be computed and compared with terrain height at a specific picture element. In the current paper, a procedure for making the distinction between ground fog and low-level stratus is proposed based on Moderate Resolution Imaging Spectroradiometer (MODIS, flying on board the NASA Terra and Aqua satellites) daytime data for Germany. Stratus thickness is alternatively derived from either empirical relationships or a newly developed retrieval scheme (lookup table approach), which relies on multiband albedo and radiative transfer calculations. A trispectral visible–near-infrared (VIS–NIR) approach has been proven to give the best results for the calculation of geometrical thickness. The comparison of horizontal visibility data from synoptic observing (SYNOP) stations of the German Weather Service and the results of the ground fog detection schemes reveals that the lookup table approach shows the best performance for both a valley fog situation and an extended layer of low stratus with complex local visibility structures. Even if the results are very encouraging [probability of detection (POD) = 0.76], relatively high percentage errors and false alarm ratios still occur. Uncertainties in the retrieval scheme are mostly due to possible collocation errors and known problems caused by comparing point and pixel data (time lag between satellite overpass and ground observation, etc.). A careful inspection of the pixels that mainly contribute to the false alarm ratio reveals problems with thin cirrus layers and the fog-edge position of the SYNOP stations. Validation results can be improved by removing these suspicious pixels (e.g., percentage error decreases from 28% to 22%).

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference65 articles.

1. Discriminating clear sky from clouds with MODIS.;Ackermann;J. Geophys. Res.,1998

2. Allam, R. , 1987: The detection of fog from satellites. Preprints, Workshop on Satellite and Radar Imagery Interpretation, Reading, United Kingdom, Meteorological Office College, 495–505.

3. Use of satellite images for fog detection (AVHRR) and forecast of fog dissipation (METEOSAT) over lowland Thessalia, Hellas.;Anthis;Int. J. Remote Sens.,1999

4. Remote cloud ceiling assessment using data-mining methods.;Bankert;J. Appl. Meteor.,2004

5. Nighttime multilayered cloud detection using MODIS and ARM data.;Baum;J. Appl. Meteor.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3