Ensemble Typhoon Quantitative Precipitation Forecasts Model in Taiwan

Author:

Hong Jing-Shan1,Fong Chin-Tzu1,Hsiao Ling-Feng2,Yu Yi-Chiang3,Tzeng Chian-You1

Affiliation:

1. Central Weather Bureau, Taipei, Taiwan

2. Taiwan Typhoon Flood Research Institute, Taipei, Taiwan

3. National Science and Technology Center for Disaster Reduction, Taipei, Taiwan

Abstract

Abstract In this study, an ensemble typhoon quantitative precipitation forecast (ETQPF) model was developed to provide typhoon rainfall forecasts for Taiwan. The ETQPF rainfall forecast is obtained by averaging the pick-out cases, which are screened using certain criterion based on given typhoon tracks from an ensemble prediction system (EPS). Therefore, the ETQPF model resembles a climatology model. However, the ETQPF model uses the quantitative precipitation forecasts (QPFs) from an EPS instead of historical rainfall observations. Two typhoon cases, Fanapi (2010) and Megi (2010), are used to evaluate the ETQPF model performance. The results show that the rainfall forecast from the ETQPF model, which is qualitatively compared and quantitatively verified, provides reasonable typhoon rainfall forecasts and is valuable for real-time operational applications. By applying the forecast track to the ETQPF model, better track forecasts lead to better ETQPF rainfall forecasts. Moreover, the ETQPF model provides the “scenario” of the typhoon QPFs according to the uncertainty of the forecast tracks. Such a scenario analysis can provide valuable information for risk assessment and decision making in disaster prevention and reduction. Deficiencies of the ETQPF model are also presented, including that the average over the pick-out case usually offsets the extremes and reduces the maximum ETQPF rainfall, the underprediction is especially noticeable for weak phase-locked rainfall systems, and the ETQPF rainfall error is related to the model bias. Therefore, reducing model bias is an important issue in further improving the ETQPF model performance.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3