Abstract
AbstractModeling techniques provide a straightforward means to dissect regional hydroclimate in response to changes in land use conditions. This study uses the Weather Research and Forecasting Model (WRF) and WRF-Hydrological modeling system (WRF-Hydro), driven by survey-based land use data in 1995 and 2015, to assess how central Taiwan’s hydroclimate responds to land use/cover change. We first run WRF-Hydro with observed rainfall as meteorological forcing to ensure reasonable runoff simulation, and then select ten cases under weak synoptic forcings in July and August in recent decades for the simulation under two land use conditions. The WRF-only simulation (i.e., uncoupled with WRF-Hydro) can reveal significant changes in heat fluxes and surface variables due to land use/cover change, including sensible and latent heat fluxes, 2-m temperature and specific humidity, and precipitation over the hotspots of urbanization or downwind areas. Coupling WRF with WRF-Hydro discloses varied runoff characteristics subject to land use/cover change: a general increase in average peak flow (~ 4.3%) and total runoff volume (~ 5.0%) accompanied by less definite time-to-peak flow, indicating a synergistic but sometimes competitive relationship between the pure hydrologic/hydraulic perspective and land–atmosphere interactions. By taking the difference between the uncoupled and coupled simulations, we verify that surface pressure, precipitation, and soil moisture are more sensitive to a better depiction of terrestrial hydrological processes; differences in the spatial variances of soil moisture can be as high as two orders of magnitude. Our findings highlight the importance of more comprehensive model physics in regional hydroclimate modeling.
Funder
Ministry of Science and Technology, Taiwan
National Science and Technology Council
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Reference38 articles.
1. Arnault J, Wagner S, Rummler T, Fersch B, Bliefernicht J, Andresen S, Kunstmann H (2016) Role of runoff-infiltration partitioning and resolved overland flow on land-atmosphere feedbacks: a case study with the WRF-Hydro coupled modeling system for West Africa. J Hydrometeorol 17(5):1489–1516
2. Bauer P, Thorpe A, Brunet G (2015) The quiet revolution of numerical weather prediction. Nature 525(7567):47–55
3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Stat Methodol 57(1):289–300
4. Boysen LR, Brovkin V, Pongratz J, Lawrence DM, Lawrence P, Vuichard N, Peylin P, Liddicoat S, Hajima T, Zhang Y, Rocher M (2020) Global climate response to idealized deforestation in CMIP6 models. Biogeosciences 17(22):5615–5638
5. Cao Q, Yu D, Georgescu M, Han Z, Wu J (2015) Impacts of land use and land cover change on regional climate: a case study in the agro-pastoral transitional zone of China. Environ Res Lett 10(12):124025