Assessing hydroclimate response to land use/cover change using coupled atmospheric-hydrological models

Author:

Chen Chia-JengORCID,Chi Min-Hung,Ye Jing-Ru

Abstract

AbstractModeling techniques provide a straightforward means to dissect regional hydroclimate in response to changes in land use conditions. This study uses the Weather Research and Forecasting Model (WRF) and WRF-Hydrological modeling system (WRF-Hydro), driven by survey-based land use data in 1995 and 2015, to assess how central Taiwan’s hydroclimate responds to land use/cover change. We first run WRF-Hydro with observed rainfall as meteorological forcing to ensure reasonable runoff simulation, and then select ten cases under weak synoptic forcings in July and August in recent decades for the simulation under two land use conditions. The WRF-only simulation (i.e., uncoupled with WRF-Hydro) can reveal significant changes in heat fluxes and surface variables due to land use/cover change, including sensible and latent heat fluxes, 2-m temperature and specific humidity, and precipitation over the hotspots of urbanization or downwind areas. Coupling WRF with WRF-Hydro discloses varied runoff characteristics subject to land use/cover change: a general increase in average peak flow (~ 4.3%) and total runoff volume (~ 5.0%) accompanied by less definite time-to-peak flow, indicating a synergistic but sometimes competitive relationship between the pure hydrologic/hydraulic perspective and land–atmosphere interactions. By taking the difference between the uncoupled and coupled simulations, we verify that surface pressure, precipitation, and soil moisture are more sensitive to a better depiction of terrestrial hydrological processes; differences in the spatial variances of soil moisture can be as high as two orders of magnitude. Our findings highlight the importance of more comprehensive model physics in regional hydroclimate modeling.

Funder

Ministry of Science and Technology, Taiwan

National Science and Technology Council

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3