Effects of the Mixed Layer Time Variability on Kinematic Subduction Rate Diagnostics

Author:

Da Costa Maria Valdivieso1,Mercier Herlé2,Treguier Anne Marie2

Affiliation:

1. Department of Oceanography, The Florida State University, Tallahassee, Florida

2. Laboratoire de Physique des Océans, CNRS-IFREMER-UBO, Plouzané, France

Abstract

Abstract An eddy-resolving primitive equation general circulation model is used to estimate water-mass subduction rates in the North Atlantic Ocean subtropical gyre. The diagnostics are based on the instantaneous kinematic approach, which allows the calculation of the annual rate of water-mass subduction at a given density range, following isopycnal outcrop positions over the annual cycle. It is shown that water-mass subduction is effected rapidly (∼1–2 months) as the mixed layer depth decreases in spring, consistent with Stommel’s hypothesis, and occurs mostly over the area of deep late-winter mixed layers (≥150 m) across the central North Atlantic in the density range 26 ≤ σ ≤ 27.2. Annual subduction rates O(100–200 m yr–1) are found south and east of the Gulf Stream extension in the density range of subtropical mode waters from roughly 26.2 to 26.6. In the northeastern part of the subtropical gyre, annual subduction rates are somewhat larger, O(250 m yr–1), from a density of about 26.9 east of the North Atlantic Current to 27.4 (upper cutoff in this study). The overall basin-integrated subduction rate for subtropical mode waters (26.2 ≤ σ ≤ 26.6) is about 12.2 Sv (Sv ≡ 106 m3 s−1), comparable to the total formation rate inferred from the surface density forcing applied in the model of roughly 11 Sv in this density range. In contrast, basin-integrated rates for denser central water (26.8 ≤ σ ≤ 27.2) provide a vanishingly small net subduction. In this range, eddy correlations (<30 days) between the surface outcrop area and the local subduction rate counteract the net subduction by the mean flow (deduced from monthly averaged model fields). Comparison with estimates of the annual subduction rate based on the annual mean velocity and late-winter mixed layer properties alone, as is usual in climatological and coarse-resolution model analyses, indicates a mismatch of at least 8 Sv in the density range where the model forms subtropical mode water. This mismatch is primarily due to time-varying mixed layer processes rather than small-scale mixing not resolved explicitly by the model. Our diagnostics based on the instantaneous kinematic approach provide a more complete picture of the water-mass formation process than diagnostics based only on air–sea flux or late-winter mixed layer model data. They reveal the crucial importance of both the seasonal mixed layer cycle and mesoscale eddies to the overall formation rate and provide thus a valuable tool for the analysis of water-mass formation rates in eddy-resolving numerical simulations at basin scale.

Publisher

American Meteorological Society

Subject

Oceanography

Reference36 articles.

1. Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses.;Barnier;J. Mar. Syst.,1995

2. Mixed-layer thermocline interactions in a three-dimensional isopycnic coordinate model.;Bleck;J. Phys. Oceanogr.,1989

3. A high resolution simulation of the wind- and thermohaline-driven circulation in the North Atlantic Ocean.;Bryan,1989

4. Chanut, J. , 2003: Paramétrisation de la restratification après convection profonde en mer du Labrador. Ph.D. thesis, University Joseph Fourier, Grenoble, France, 150 pp.

5. Subduction.;Cushman-Roisin,1987

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3