Exceptional sea ice loss leading to anomalously deep winter convection north of Svalbard in 2018

Author:

Fu Chuanshuai,Myers Paul G.

Abstract

AbstractAn important question is will deep convection sites, where deep waters are ventilated and air-gas exchange into the deep ocean occurs, emerge in the Arctic Ocean with the warming climate. As sea ice retreats northward and as Arctic sea ice becomes younger and thinner, air-sea interactions are strengthening in the high-latitude oceans. This includes new and extreme deep convection events. We investigate the associated physical processes and examine impacts and implications. Focusing on a region near the Arctic gateway of Fram Strait, our study confirms a significant sea ice cover reduction north of Svalbard in 2018 compared to the past decade, shown in observations and several numerical studies. We conduct our study using the regional configuration Arctic and North Hemisphere Atlantic of the ocean/sea ice model NEMO, running at 1/12° resolution (ANHA12). Our numerical study shows that the open water condition during the winter of 2018 allows intense winter convection over the Yermak Plateau, as more oceanic heat is lost to the atmosphere without the insulating sea ice cover, causing the mixed layer depth to reach over 600 m. Anomalous wind prior to the deep convection event forces offshore sea ice movement and contributes to the reduced sea ice cover. The sea ice loss is also attributed to the excess heat brought by the Atlantic Water, which reaches its maximum in the preceding winter in Fram Strait. The deep convection event coincides with enhanced mesoscale eddy activity on the boundary of the Yermak Plateau, especially to the east. The resulting substantial heat loss to the atmosphere also leads to a heat content reduction integrated over the Yermak Plateau region. This event can be linked to the minimum southward sea ice volume flux through Fram Strait in 2018, which is a potential negative freshwater anomaly in the subpolar Atlantic.

Funder

Chinese Scholarship Council

Natural Sciences and Engineering Research Council (NSERC) of Canada

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3