Real-Time, High-Resolution, Space–Time Analysis of Sea Surface Temperatures from Multiple Platforms

Author:

Lazarus Steven M.1,Calvert Corey G.1,Splitt Michael E.1,Santos Pablo2,Sharp David W.3,Blottman Peter F.3,Spratt Scott M.3

Affiliation:

1. Florida Institute of Technology, Melbourne, Florida

2. National Weather Service, Miami, Florida

3. National Weather Service, Melbourne, Florida

Abstract

Abstract A sea surface temperature (SST) analysis system designed to initialize short-term atmospheric model forecasts is evaluated for a month-long, relatively clear period in May 2004. System inputs include retrieved SSTs from the Geostationary Operational Environmental Satellite (GOES)-East and the Moderate Resolution Imaging Spectroradiometer (MODIS). The GOES SSTs are processed via a sequence of quality control and bias correction steps and are then composited. The MODIS SSTs are bias corrected and checked against the background field (GOES composites) prior to assimilation. Buoy data, withheld from the analyses, are used to bias correct the MODIS and GOES SSTs and to evaluate both the composites and analyses. The bias correction improves the identification of residual cloud-contaminated MODIS SSTs. The largest analysis system improvements are obtained from the adjustments associated with the creation of the GOES composites (i.e., a reduction in buoy/GOES composite rmse on the order of 0.3°–0.5°C). A total of 120 analyses (80 night and 40 day) are repeated for different experimental configurations designed to test the impact of the GOES composites, MODIS cloud mask, spatially varying background error covariance and decorrelation length scales, data reduction, and anisotropy. For the May 2004 period, the nighttime MODIS cloud mask is too conservative, at times removing good SST data and degrading the analyses. Nocturnal error variance estimates are approximately half that of the daytime and are relatively spatially homogeneous, indicating that the nighttime composites are, in general, superior. A 30-day climatological SST gradient is used to create anisotropic weights and a spatially varying length scale. The former improve the analyses in regions with significant SST gradients and sufficient data while the latter reduces the analysis rmse in regions where the innovations tend to be well correlated with distinct and persistent SST gradients (e.g., Loop Current). Data thinning reduces the rmse by expediting analysis convergence while simultaneously enhancing the computational efficiency of the analysis system. Based on these findings, an operational analysis configuration is proposed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3