Evaluation of the ABI/GOES-16 SST Product in the Tropical and Southwestern Atlantic Ocean

Author:

Azevedo Mayna Helena,Rudorff NatáliaORCID,Aravéquia José AntônioORCID

Abstract

Sea surface temperature (SST) is an essential climate variable used for ocean and weather monitoring and forecasting. The NOAA’s next generation geostationary satellite GOES-16 was declared operational at the east position (75°W) in December 2017, carrying onboard an Advanced Baseline Imager (ABI). The hyperspectral ABI sensor now allows SST estimates every 10–15 min at both day and nighttime, with advanced options for cloud screening and water vapor correction. In the present work, we compare the first operational ABI SST product (OSI SAF, 2018) with an in situ match-up database (MDB) across the Tropical and Southwestern Atlantic Ocean, off the Brazilian coast, throughout the year of 2018. The MDB was obtained from two long-term programs, i.e., PIRATA moored buoys (FOLTZ et al., 2016) and PNBoia moored and drifting buoys (MARINHA DO BRASIL, 2017). Separate comparisons were made for each data set, analyzing the uncertainties according to the program (i.e., buoy type and region), satellite SST quality level and influence of diurnal heating. We also compare the ABI product with the OSTIA analysis L4 SST (DONLON et al., 2012) to increment our analyses on the spatio-temporal biases within the study region. The results show that the OSI SAF ABI SST L3C has a mean bias (0.1 °C) and error (RMSE, 0.5 °C) within the GHRSST standards, with an exception being coastal waters off the southeast Brazilian coast (RMSE, 0.65 °C), which are subjected to sharp thermal fronts. The highest biases are for regions/seasons subjected to persistent cloud coverage and high water-vapor content, i.e., the Intertropical and South Atlantic Convergence Zones, as well as highly dynamic frontal zones, i.e., the Brazil Malvinas Confluence Zone, the Subtropical Front and coastal waters. The ABI SST product is suitable for operational use, and applications should explore more deeply the new set of information provided.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference43 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of FY-4A/AGRI SST with Himawari-8/AHI and In Situ SST;Remote Sensing;2023-08-23

2. Evaluation and Improvement of FY-4A/AGRI Sea Surface Temperature Data;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

3. Ocean water quality monitoring using remote sensing techniques: A review;Marine Environmental Research;2022-09

4. An Efficient Algorithm for Ocean-Front Evolution Trend Recognition;Remote Sensing;2022-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3