Surface Wave Effects on High-Frequency Currents over a Shelf Edge Bank

Author:

Wijesekera H. W.1,Wang D. W.1,Teague W. J.1,Jarosz E.1,Rogers W. E.1,Fribance D. B.2,Moum J. N.3

Affiliation:

1. Naval Research Laboratory, Stennis Space Center, Mississippi

2. Coastal Carolina University, Conway, South Carolina

3. Oregon State University, Corvallis, Oregon

Abstract

Abstract Several acoustic Doppler current profilers and vertical strings of temperature, conductivity, and pressure sensors, deployed on and around the East Flower Garden Bank (EFGB), were used to examine surface wave effects on high-frequency flows over the bank and to quantify spatial and temporal characteristic of these high-frequency flows. The EFGB, about 5-km wide and 10-km long, is located about 180-km southeast of Galveston, Texas, and consists of steep slopes on southern and eastern sides that rise from water depths over 100 m to within 20 m of the surface. Three-dimensional flows with frequencies ranging from 0.2 to 2 cycles per hour (cph) were observed in the mixed layer when wind speed and Stokes drift at the surface were large. These motions were stronger over the bank than outside the perimeter. The squared vertical velocity w2 was strongest near the surface and decayed exponentially with depth, and the e-folding length of w2 was 2 times larger than that of Stokes drift. The 2-h-averaged w2 in the mixed layer, scaled by the squared friction velocity, was largest when the turbulent Langmuir number was less than unity and the mixed layer was shallow. It is suggested that Langmuir circulation is responsible for the generation of vertical flows in the mixed layer, and that the increase in kinetic energy is due to an enhancement of Stokes drift by wave focusing. The lack of agreement with open-ocean Langmuir scaling arguments is likely due to the enhanced kinetic energy by wave focusing.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3