Sediment Resuspension and Transport by Internal Solitary Waves

Author:

Boegman Leon1,Stastna Marek2

Affiliation:

1. Environmental Fluid Dynamics Laboratory, Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada;

2. Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada;

Abstract

Large-amplitude internal waves induce currents and turbulence in the bottom boundary layer (BBL) and are thus a key driver of sediment movement on the continental margins. Observations of internal wave–induced sediment resuspension and transport cover significant portions of the world's oceans. Research on BBL instabilities, induced by internal waves, has identified several mechanisms by which the BBL is energized and sediment may be resuspended. Due to the complexity of the induced currents, process-oriented research using theory, direct numerical simulations, and laboratory experiments has played a vital role. However, experiments and simulations have inherent limitations as analogs for oceanic conditions due to disparities in Reynolds number and grid resolution, respectively. Parameterizations are needed for modeling resuspension from observed data and in larger-scale models, with the efficacy of parameterizations based on the quadratic stress largely determining the accuracy of present field-scale efforts.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3