Observations of Tidal Internal Wave Beams at Kauai Channel, Hawaii

Author:

Cole S. T.1,Rudnick D. L.1,Hodges B. A.1,Martin J. P.2

Affiliation:

1. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

2. Applied Physics Laboratory, University of Washington, Seattle, Washington

Abstract

Abstract To observe the across-ridge structure of internal tides, density and velocity were measured using SeaSoar and a Doppler sonar over the upper 400–600 m of the ocean extending 152 km on each side of the Hawaiian Ridge at Kauai Channel. Eighteen sections were completed in about 18 days with sampling intentionally detuned from the lunar semidiurnal (M2) tide so that averaging over all sections was equivalent to phase averaging the M2 tide. Velocity and displacement variance and several covariances involving velocity and displacement showed one M2 internal wave beam on each side of the ridge and reflection of the beams off of the surface. Theoretical ray slopes aligned with the observed beams and originated from the sides of the ridge. Energy flux was in agreement with internal wave generation at the ridge. Inferred turbulent dissipation was elevated relative to open ocean values near tidal beams. Energy flux was larger than total dissipation almost everywhere across the ridge. Internal wave energy flux and dissipation at Kauai Channel were 1.5–2.5 times greater than at the average location along the Hawaiian Ridge. The upper 400–600 m was about 1/3 to 1/2 as energetic as the full-depth ocean. Tidal beams interact with each other over the entire length of the beams causing gradients along beams in almost all covariances, momentum flux divergences, and mean flows. At Kauai Channel, momentum flux divergences corresponded to mean flows of 1–4 cm s−1.

Publisher

American Meteorological Society

Subject

Oceanography

Reference59 articles.

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3