Evaluation of Radar Multiple-Scattering Effects from a GPM Perspective. Part II: Model Results

Author:

Battaglia A.1,Ajewole M. O.2,Simmer C.1

Affiliation:

1. Meteorological Institute, University of Bonn, Bonn, Germany

2. Department of Physics, Federal University of Technology, Akure, Nigeria

Abstract

Abstract Multiple-scattering effects as sensed by radars in configurations useful in the context of the Global Precipitation Mission (GPM) are evaluated for a range of meteorological profiles extracted from four different cloud-resolving model simulations. The multiple-scattering effects are characterized in terms of both the reflectivity enhancement and the linear depolarization ratio. When considering the copolarized reflectivity in spaceborne configurations, the multiple-scattering enhancement becomes a real issue for Ka-band radars, though it is generally negligible at the Ku band, except in meteorologically important situations such as when high rain rates and a considerable amount of ice are present aloft. At Ka band it can reach tens of decibels when systems of heavy cold rain are considered, that is, profiles that include rain layers with high-density ice particles aloft. On the other hand, particularly at 35 GHz, high values of the linear depolarization ratio are predicted even in airborne configurations because of multiple-scattering effects. This result should allow the observation of these features in field campaigns.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3