Multiple-Scattering-Induced “Ghost Echoes” in GPM DPR Observations of a Tornadic Supercell

Author:

Battaglia Alessandro1,Mroz Kamil2,Tanelli Simone3,Tridon Frederic4,Kirstetter Pierre-Emmanuel5

Affiliation:

1. National Center for Earth Observation, and Earth Observation Science, Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom

2. National Center for Earth Observation, University of Leicester, Leicester, United Kingdom

3. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

4. Earth Observation Science, Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom

5. Advanced Radar Research Center, National Weather Center, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

AbstractEvidence of multiple-scattering-induced pulse stretching for the signal of both frequencies of the Dual-Frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) mission Core Observatory satellite is presented on the basis of collocated ground-based WSR-88D S-band observations of an extreme case: a tornadic supercell. The ground-based observations clearly show a tilted convective core with a so-called bounded weak-echo region—that is, locations where precipitation is absent or extremely light at the ground while large amounts of liquid or frozen precipitation are present aloft. The satellite observations in this region show reflectivity profiles that extend all the way to the surface despite the absence of near-surface precipitation: these are here referred to as “ghost echoes.” Furthermore, the Ku- and Ka-band profiles exhibit similar slopes, which is a typical sign that the observed power is almost entirely due to multiple scattering. A novel microphysical retrieval that is based on triple-frequency (S–Ku–Ka) observations shows that a dense ice core located between 4 and 14 km with particle sizes exceeding 2.5 cm and integrated ice contents exceeding 7.0 kg m−2 is the source of the ghost echoes of the signal in the lower layers. The level of confidence of this assessment is strengthened by the availability of the S-band data, which provide the necessary additional constraints to the radar retrieval that is based on DPR data. This study shows not only that multiple-scattering contributions may become predominant at Ka already very high up in the atmosphere but also that they play a key role at Ku band within the layers close to the surface. As a result, extreme caution must be paid even in the interpretation of Ku-based retrievals (e.g., the TRMM PR dataset or any DPR retrievals that are based on the assumption that Ku band is not affected by multiple scattering) when examining extreme surface rain rates that occur in the presence of deep dense ice layers.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3