Biases and Model Agreement in Projections of Climate Extremes over the Tropical Pacific

Author:

Perkins Sarah E.1

Affiliation:

1. Centre for Australian Weather and Climate Research, CSIRO, Aspendale, Australia

Abstract

Abstract Using the Coupled Model Intercomparison Project phase 3 (CMIP3) general circulation models (GCMs), projections of a range of climate extremes are explored for the western Pacific. These projections include the 1-in-20-yr return levels and a selection of climate indices for minimum temperature, maximum temperature, and precipitation, and they are compared to corresponding mean projections for the Special Report on Emission Scenarios (SRES) A2 scenario during 2081–2100. Models are evaluated per variable based on their ability to simulate current extremes, as well as the overall daily distribution. Using the standardized evaluation scores for each variable, models are divided into four subsets where ensemble variability is calculated to measure model uncertainty and biases are calculated in respect to the multimodel ensemble (MME). Results show that higher uncertainty in projections of climate extremes exists when compared to the mean, even in those subsets consisting of higher-skilled models. Higher uncertainty exists for precipitation projections than for temperature, and biases and uncertainties in the 1-in-20-yr precipitation events are an order of magnitude higher than the corresponding mean. Poorer performing models exhibit a cooler bias in the mean and 1-in-20-yr return levels for maximum and minimum temperature, and ensemble variability is low among all subsets of mean minimum temperature, especially the lower-skilled subsets. Higher-skilled models project 1-in-20-yr precipitation return levels that are more intense than in the MME. The frequency of temperature extremes increase dramatically; however, this is explained by the underpinning small temperature range of the region. Although some systematic biases occur in the higher- and lower-skilled models and omitting the poorer performers is recommended, great care should be exercised when interpreting the reduction of uncertainty because the ensemble variability among the remaining models is comparable and in some cases greater than the MME. Such results should be treated on a case-by-case basis.

Publisher

American Meteorological Society

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3