Heatwave Characteristics in the Recent Climate and at Different Global Warming Levels: A Multimodel Analysis at the Global Scale

Author:

Al‐Yaari A.12ORCID,Zhao Y.1,Cheruy F.1ORCID,Thiery W.3ORCID

Affiliation:

1. Laboratoire de Météorologie Dynamique Sorbonne Université/CNRS/École Normale Supérieure Paris France

2. IRD CNRS Grenoble INP IGE University of Grenoble Alpes Grenoble France

3. Department of Hydrology and Hydraulic Engineering Vrije Universiteit Brussel Brussels Belgium

Abstract

AbstractThe representation of heatwaves (HWs) in the Coupled Model Intercomparison Project phase 6 (CMIP6) models is analyzed. This study (a) evaluates the performance of CMIP6 simulations against global reanalysis and observations regarding time‐ and intensity‐related criteria and (b) investigates how HWs are projected to change at different global warming levels (GWLs). During 1979–2014, the dispersion of the models is comparable to the observational uncertainty for the time indices (duration, frequency, number of events). It is of the order of one event per year, 1 day for the duration of the events and 2 days for the frequency, with tendencies for over‐ or underestimation, depending on the reference data set and the region considered. For the HW magnitude, the models' dispersion can reach 15°C for a given region and is significantly higher than the observational uncertainty. The mean intensity of HWs tends to be overestimated, which is partly attributed to overly pronounced drying of the soil during HW events. The contribution of the soil moisture anomaly to the temperature anomaly during recent specific HWs is shown to reach up to 30% of the signal. For a given GWL, intensification of HW occurrence, spatial extension, and duration is detected worldwide, but it is modulated at the regional scale and strongly model dependent. For time‐related indices, tropical regions and the Arabian Peninsula will be most impacted, but the maximum temperature will strongly increase in mid‐latitude regions. Time–space analyses of the evolution of HW properties for a given GWL are discussed.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3