Bi-modal Structure and Variability of Large-Scale Diabatic Heating in the Tropics

Author:

Zhang Chidong1,Hagos Samson M.1

Affiliation:

1. RSMAS, University of Miami, Miami, Florida

Abstract

Abstract Tropical diabatic heating profiles estimated using sounding data from eight field campaigns were diagnosed to document their common and prevailing structure and variability that are relevant to the large-scale circulation. The first two modes of a rotated empirical orthogonal function analysis—one deep, one shallow—explain 85% of the total variance of all data combined. These two modes were used to describe the heating evolution, which led to three composited heating profiles that are considered as prevailing large-scale heating structures. They are, respectively, shallow, bottom heavy (peak near 700 hPa); deep, middle heavy (peak near 400 hPa); and stratiform-like, top heavy (heating peak near 400 hPa and cooling peak near 700 hPa). The amplitudes and occurrence frequencies of the shallow, bottom-heavy heating profiles are comparable to those of the stratiform-like, top-heavy ones. The sequence of the most probable heating evolution is deep tropospheric cooling to bottom-heavy heating, to middle heavy heating, to stratiform-like heating, then back to deep tropospheric cooling. This heating transition appears to occur on different time scales. Each of the prevailing heating structures is interpreted as being composed of particular fractional populations of various types of precipitating cloud systems, which are viewed as the building blocks for the mean. A linear balanced model forced by the three prevailing heating profiles produces rich vertical structures in the circulation with multiple overturning cells, whose corresponding moisture convergence and surface wind fields are very sensitive to the heating structures.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3