Sensitivity Studies of Aerosol–Cloud Interactions in Mixed-Phase Orographic Precipitation

Author:

Muhlbauer Andreas1,Lohmann Ulrike1

Affiliation:

1. Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Abstract

Abstract Anthropogenic aerosols serve as a source of both cloud condensation nuclei (CCN) and ice nuclei (IN) and affect microphysical properties of clouds. Increasing aerosol number concentration is assumed to retard the cloud droplet coalescence and the riming process in mixed-phase orographic clouds, thereby decreasing orographic precipitation. In this study, idealized 3D simulations are conducted to investigate aerosol–cloud interactions in mixed-phase orographic clouds and the possible impact of anthropogenic and natural aerosols on orographic precipitation. Two different types of aerosol anomalies are considered: naturally occurring mineral dust and anthropogenic black carbon. In the simulations with a dust aerosol anomaly, the dust aerosols serve as efficient ice nuclei in the contact mode, leading to an early initiation of the ice phase in the orographic cloud. As a consequence, the riming rates in the cloud are increased, leading to increased precipitation efficiency and enhancement of orographic precipitation. The simulations with an anthropogenic aerosol anomaly suggest that the mixing state of the aerosols plays a crucial role because coating and mixing may cause the aerosols to initiate freezing in the less efficient immersion mode rather than by contact nucleation. It is found that externally mixed black carbon aerosols increase riming in orographic clouds and enhance orographic precipitation. In contrast, internally mixed black carbon aerosols decrease the riming rates, leading in turn to a decrease in orographic precipitation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3