Unveiling atmospheric transport and mixing mechanisms of ice-nucleating particles over the Alps

Author:

Wieder JörgORCID,Mignani ClaudiaORCID,Schär Mario,Roth Lucie,Sprenger Michael,Henneberger JanORCID,Lohmann UlrikeORCID,Brunner CyrilORCID,Kanji Zamin A.ORCID

Abstract

Abstract. Precipitation over the mid-latitudes originates mostly from the ice phase within mixed-phase clouds, signifying the importance of initial ice crystal formation. Primary ice crystals are formed on ice-nucleating particles (INPs), which measurements suggest are sparsely populated in the troposphere. INPs are emitted by a large number of ground-based sources into the atmosphere, from where they can be lifted up to cloud heights. Therefore, it is vital to understand vertical INP transport mechanisms, which are particularly complex over orographic terrain. We investigate the vertical transport and mixing mechanisms of INPs over orographic terrain during cloudy conditions by simultaneous measurements of in situ INP concentration at a high valley and a mountaintop site in the Swiss Alps in late winter 2019. On the mountaintop, the INP concentrations were, on average, lower than in the high valley. However, a diurnal cycle in INP concentrations was observed at the mountaintop, which was absent in the high valley. The median mountaintop INP concentration equilibrated to the concentration found in the high valley towards the night. We found that, in nearly 70 % of the observed cases, INP-rich air masses were orographically lifted from low elevation upstream of the measurement site. In addition, we present evidence that, over the course of the day, air masses containing high INP concentrations were advected from the Swiss plateau towards the measurement sites, contributing to the diurnal cycle of INPs. Our results suggest a local INP concentration enhancement over the Alps during cloud events.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3