New Empirical Formulation for the Sublimational Breakup of Graupel and Dendritic Snow

Author:

Abstract

Abstract Ice fragments are generated by sublimation of ice particles in subsaturated conditions in natural clouds. Conceivably, such sublimational breakup would be expected to cause ice multiplication in natural clouds. Any fragment that survives will grow to become ice precipitation that may sublimate and fragment further. As a first step toward assessing this overlooked process, a formulation is proposed for the number of ice fragments from sublimation of ice particles for an atmospheric model. This is done by amalgamating laboratory observations from previously published studies. The concept of a “sublimated mass activity spectrum” for the breakup is applied to the dataset. The number of ice fragments is determined by the relative humidity over ice and the initial size of the parent ice particles. The new formulation applies to dendritic crystals and heavily rimed particles only. Finally, a thought experiment is performed for an idealized scenario of subsaturation with in-cloud descent. Scaling analysis yields an estimate of an ice enhancement ratio of about 5 (10) within a weak deep convective downdraft of about 2 m s−1, for an initial monodisperse population of dendritic snow (graupel) particles of 3 L−1 and 2 mm. During descent, there is a dynamic equilibrium between continual emission of fragments and their depletion by sublimation. A simplified bin microphysics parcel model exhibits this dynamical quasi equilibrium, consistent with the thought experiment. The fragments have average lifetimes of around 90 and 70 s for dendrites and graupel, respectively. Sublimational breakup is predicted to cause significant secondary ice production.

Funder

U.S. Department of Energy

Svenska Forskningsrådet Formas

Vetenskapsrådet

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference106 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3