Convective and turbulent motions in non-precipitating Cu. Part 1: Method of separation of convective and turbulent motions

Author:

Pinsky Mark1,Eytan Eshkol2,Koren Ilan2,Altaratz Orit2,Khain Alexander1

Affiliation:

1. 1 Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Israel

2. 2 Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel

Abstract

AbstractAtmospheric motions in clouds and cloud surrounding have a wide range of scales, from several kilometers to centimeters. These motions have different impacts on cloud dynamics and microphysics. Larger-scale motions (hereafter referred to as convective motions) are responsible for mass transport over distances comparable with cloud scale, while motions of smaller scales (hereafter referred to as turbulent motions) are stochastic and responsible for mixing and cloud dilution. This distinction substantially simplifies the analysis of dynamic and microphysical processes in clouds. The present research is Part 1 of the study aimed at describing the method for separating the motion scale into a convective component and a turbulent component. An idealized flow is constructed, which is a sum of an initially prescribed field of the convective velocity with updrafts in the cloud core and downdrafts outside the core, and a stochastic turbulent velocity field obeying the turbulent properties, including the -5/3 law and the 2/3 structure function law. A wavelet method is developed allowing separation of the velocity field into the convective and turbulent components, with parameter values being in a good agreement with those prescribed initially. The efficiency of the method is demonstrated by an example of a vertical velocity field of a cumulus cloud simulated using SAM with bin-microphysics and resolution of 10 m. It is shown that vertical velocity in clouds indeed can be represented as a sum of convective velocity (forming zone of cloud updrafts and subsiding shell) and a stochastic velocity obeying laws of homogeneous and isotropic turbulence.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3