Shallow Cumulus Properties as Captured by Adiabatic Fraction in High-Resolution LES Simulations

Author:

Eytan Eshkol1,Khain Alexander2,Pinsky Mark2,Altaratz Orit1,Shpund Jacob3,Koren Ilan1

Affiliation:

1. a Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel

2. b Institute of Earth Science, Hebrew University, Jerusalem, Israel

3. c Pacific Northwest National Laboratory, Richland, Washington

Abstract

Abstract Shallow convective clouds are important players in Earth’s energy budget and hydrological cycle, and are abundant in the tropical and subtropical belts. They greatly contribute to the uncertainty in climate predictions due to their unresolved, complex processes that include coupling between the dynamics and microphysics. Analysis of cloud structure can be simplified by considering cloud motions as a combination of moist adiabatic motions like adiabatic updrafts and turbulent motions leading to deviation from adiabaticity. In this work, we study the sizes and occurrence of adiabatic regions in shallow cumulus clouds during their growth and mature stages, and use the adiabatic fraction (AF) as a continuous metric to describe cloud processes and properties from the core to the edge. To do so, we simulate isolated trade wind cumulus clouds of different sizes using the System of Atmospheric Modeling (SAM) model in high resolution (10 m) with the Hebrew University spectral bin microphysics (SBM). The fine features in the clouds’ dynamics and microphysics, including small near-adiabatic volumes and a thin transition zone at the edge of the cloud (∼20–40 m in width), are captured. The AF is shown to be an efficient measure for analyzing cloud properties and key processes determining the droplet-size distribution formation and shape during the cloud evolution. Physical processes governing the properties of droplet size distributions at different cloud regions (e.g., core, edge) are analyzed in relation to AF. Significance Statement 1) This study investigates the evolution of cumulus clouds (Cu) using a 10-m-resolution LES model with spectral bin microphysics. 2) The study improves the understanding of the mutual effects of adiabatic updrafts and lateral entrainment and mixing. 3) The study demonstrates the existence of an adiabatic core in nonprecipitating Cu. 4) Shapes of the droplet size distributions are closely related to the adiabatic fraction values. 5) Utilization of high resolution reveals the existence of physically significant small features in the cloud structure, such as a narrow cloud interface zone and small adiabatic volumes.

Funder

u.s. department of energy

european research council

israel science foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3